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Abstract. The prbblem of constructing variational trial functions for potentials such as 
the Bressel-Kerman-Rouben nucleon-nucleon potential is discussed. It is demonstrated 
that failure to provide suitable trial functions can result in a serious reduction in the con- 
vergence rate. The discontinuity in the trial functions is introduced by means of functions 
analogous to the B-splines. The technique advocated is to construct a core trial function 
using these functions which may then be used in conjunction with a systematic expansion 
set. 

1. Introduction 

There have been a large number of instances of the use of square well-like potentials in 
~uclear physics calculations (for example within the nuclear three-body problem there 
are the early calculations of Clapp 1949, Feshbach and Rarita 1949 and, more recently, 
Fuda 1971 and Kim and Tubis 1971). In few, if any, of these calculations is any 
Cognizance taken of the second derivative of the wavefunction having a discontinuity 
(this fact follows from the Schrodinger equation since the potential is discontinuous 
and the wavefunction is continuous). In general this fact is of little interest and can 
safely be ignored. However, in a variational calculation of any system in which such a 
potential occurs, it is obviously desirable that the choice of trial function should reflect 

property of the exact solution. No variational calculation (known to the authors) 
mg such a potential has incorporated a trial function with a discontinuous second 
derivative, the reason for this being that the calculations with continuous trial functions 
maverge to the exact solution to arbitrary accuracy. The only disadvantage com- 
p'~tionally is that the convergence is somewhat slow, but for the simple systems 
usulY considered this is not a severe disadvantage. 

Nevertheless, there is one area in which the slow convergence rate does cause a 
severe problem. This is within the nuclear three-body problem with realistic potentials 
where the complexity of the problem makes it desirable to achieve the fastest possible 
mnvergence. Hennell and Delves (1972, 1973) and Delves and Hennell (1971) have 
y d  out a series of variational calculations for the three-nucleon system (using 
%lcal nuclear potentials) in which the convergence of the calculations has been 
demonstrated. However, when they tried to use the same techniques on the potential of 

(1969, to be referred to as BKR), the calculations failed, the convergence 
rate be& reduced to such an extent that the calculation was no longer feasible. 

et 
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n e  BKR potential consists of a finite square barrier core and an attractive panai 
interparticle distances greater than the core radius. Thus a two-body system her. 
acting via this potential would have a sizeable discontinuity in the second &nvatip( 
of the wavefunction at the core radius. The trial functions used by Hennell and hiver 
did not contain this information about the two-body subsystems and they attributed 
their failure to this fact. 

n e  variational approach of Hennell and Delves is global in the sense that a 
term of the trial function has influence everywhere in the region of interat. 
alternative local variational approach exists in which each term of the trial functionb 
only non-zero over a well defined portion of the region and hence is referred to 
finite element method. (For an introduction to this method and some recent apph 
cations, see Strang and Fix 1973 and Whiteman 1973.) In this paper the finite 
method is used with piecewise cubic polynomials to examine the effects of the inclusion 
of the above mentioned discontinuity in the trial function. (We note that a somewha 
similar idea has previously been used in different context by Fix er a1 1973.) 

In 8 2 and 3 the trial functions are introduced, while in 3 4, the method is applid 
to the realistic discontinuous BKR nuclear potential. Finally, in 0 5, some conclusions 
are given and some comments on the use of such a technique within more compla 
problems are made. 

2. Trial functions 

The cubic splines which we shall use are the B-splines of Schoenberg (1946). They are 
defined in terms of an equidistant mesh on the real line, the mesh points (or knots) 
being at the integers. We define 

1x1 2 2 

2 > 1x1 2 1 Bo(x) = $ (2-/x()3 

IO (2-/X()3--4(1-(X1)3 1 > 1x1. 
(The definition of the B-spline given in Shore (1973) contains a misprint and should 
be as quoted above.) Then, as is easily checked, Bo, Bb and B; vanish outside the rap 
x E [ - 2,23 while within this range they are continuous. Note that B; is discontinuous 
If we define B, by 

Bi(X) = Bo(x- i) 

then we see that B, is the spline centred on the point x = i and so the linear combinatiofl 
N 

$(XI = 
i = O  

is (in general) non-zero for x E’[ - 2, N + 21 and $, $’ and IC/” are continuous at the knob 
(x = - 2, - 1, . . . , N + 2). However, as stated in the introduction, we wish to allow for 

the possibility of there being a discontinuous second derivative at a certain point, 
Suppose we define 

1x1 2 2 

2 > 1x1 >, 1 

1 ’ 1x1 
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x > o  

x < 0. sgn(x) = x/lxl = {:: 
ne& Q, and its derivatives vanish outside x E [- 2,2] but within this range Qo and 

are continuous whilst Qh has a discontinuity at x = 0, the magnitude of this dis- 
continuity being 

AS before, we define Qi by 

-0 

Qi(O-)-(Qg(O+) = 18. 

Qi(x) = Qo(x - i) 
ad we can show that 

N 

44x1 = 1 -@i(x) + bkQk(x) O g k G N  
i = O  

is aon-zero for x E [-2, N + 2 ]  with q5 and (6’ continuous everywhere but +” has a 
discontinuity at x = k with magnitude 

$”(k-)-q5”(k+) = 18bk. 

3. Calculation details 

We will be concerned with finding the binding energy of a two-body s-wave system 
described by 

(3.1) 

where Vis a given potential. For the bound state, the boundary conditions associated 
with (3.1) are 

44 p ,  r-+O (3.2) 

4-1 + 0, r +  so. (3.3) 

and 

Rather than work with the infinite interval r E [O, a], we map this region to a finite 
mterval x E [0, MI,  M being a positive integer, by 

r = f (4 
where we have explicitly chosen 

(3.4) 

f (x) = crx/(M - x). (3.5) 
fn(3.5h is a parameter that can be used to position the important part of the r region 

centre of the x region. On applying this transformation to equation (3.1), we have 

(3.1~) 
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where 
*(XI = u(f(x)) 

U(X) = W x ) )  

*(x) x, x + o  (3.24 

*(XI + 0, x -+ M .  (3.30) 

and the boundary conditions are replaced by 

For trial functions we shall use the B-splines defined in $2. However, before we Q 

use them in a conventional variational method, we must ensure that the prescribed 
boundary conditions are automatically satisfied. If we define 

S,(x) = B,(x)-iB- l(x) O < X < 2  

S,(x) = B,(x)-B-,(x) O < x < 3  (3.4 
Si(X) = B,(x) 2 < i < M - 2 , 0  < x < M 

then it is a simple matter to check that the Si(x) satisfy boundary conditions (3.21 
and (3 .34.  

The linear combination 
M - 2  

#(XI = 1 ciSi(x)+ bliQli(~), M-2 2 k 2 2  (3.1) 
i = O  

has the property that 4, 4' and 4'' are everywhere continuous for x E [0, MI, except at 
x = k where 4" is discontinuous, and satisfies the boundary conditions (3 .2~)  and (3.30) 
Thus (3.7) is a suitable trial function for use with a discontinuous potential (eg BKR) 
provided that the transformation (3.4) maps the core radius r, onto x = k. 

Shore (1973) has previously considered B-splines in variational calculations but has 
approached the problem somewhat differently. Rather than work with the infinite 
interval, he cuts off equation (3.1) at a suitably chosen rmzx and then maps r E [O, rd 
onto x E [0, MI by 

r = S[exp(S,x)- 11, S, = M - In[l+ (rmaX/S)] 

S being a free parameter. Thus, there are two parameters r,,, and S which have to be 
optimized in some sense. For the (continuous) Coulomb potential, it was found that 
transformation (3.5), with LY suitably chosen, and trial function (3.7) (omitting the 01 

term) gave results as accurate as those of Shore for the same number of trial parameted 
Thus we feel that (3.5) is a more attractive choice for the transformation (since it has 
only one parameter to be adjusted). Furthermore, the same techniques used 0112 
realistic continuous nuclear potential (Reid soft core (Reid 1968), to be referred to: 
RSC) gave good results, the energy converging to its correct value at a rate O(N- 1 
where N is the number of variational parameters. 

This section has been formulated for the case of an s-wave bound state, but 
extension to higher angular momentum is straightforward. Equation (3.1) then E- 
cludes the angular momentum barrier term I ( / +  l),+' and (3.2) is replaced by 

For I = 1,2 it is possible to construct combinations of the B-splines (as was done' 
(3.6)) to satisfy the boundary condition near x = 0, but for 12 3 this cannot bedooe 

u(r) - r'+ I, r -+ 0. 
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we are only using cubic functions). Instead, one would have to replace the 
wdary condition at r = 0 by u(0) = 0, or the conventional variational method 

have to be replaced by one which does not explicitly require the trial function to 
the boundary conditions (see Hennell and Hendry 1975 and references therein). 

g0~(1973) has effectively used the former procedure for all partial waves for 1 2 1. 

frm& 

4 Discontinuous potential 

fora realistic discontinuous potential we have taken 

670 x 1.4/41.5 

- 1-4 x 139.4 x 0.08E(1+ 8.7E + 10.6E2)/41-5 

r < rc 

Y > rc 

p = 1/1.415, 
V(r)  = 1 rc = 0.688 fm, E = exp( - p ) / p r ,  

ihirbeing the 'So potential of Bressel et a1 (1969) adjusted by a factor 1.4 to produce a 
bound state. (The factor 41.5 is the usual conversion when working in Mev and fm.) 
Forthis potential, we know that the discontinuity of the wavefunction's second deriva- 
tive is 

Ad'  = 36.38 

ahere 

For the trial function we have taken 

We use the transformation 

r = c t x / ( N + 2 - x )  

h a  cannot take any value since we must ensure that the core radius r ,  maps onto the 
Phtx = k in (4.1). To achieve this, we have introduced a parameter R which describes 
fieposition of the core ( x  = k)  relative to the final point of interest in the x region 
6 X  = N t 2).  Having chosen a suitable value of R ,  k is then found by 

k = nearest integer to ( ( N  + 2)/R),  k 2 2. 

as N increases, the position of k moves outwards. Once k has been found, U is 
&en by 

CI = r c ( N + 2 - k ) / k .  . 

with the above trial function (4.1), the Rayleigh-Ritz procedure then replaces equation 
l3.1)by the matrix eigenvalue problem 

9 a  = E J f a  

'ere 9, Jlr are symmetric ( N + 2 )  x ( N + 2 )  matrices and a is an ( N + 2 )  vector. The 
lfements of Y and JV are evaluated in the usual way, each element having contributions 
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from at most four adjacent subintervals in x. Numerically, it was found that a lob 
order Gauss-Legendre rule over each subinterval gave sufficient accuracy for 
evaluation of these integrals. 

J A Hendry and M A Hennell 

For U we have 

a. = c. l < i < N + l  
1 1  

a N + 2  = bk* 

Figure 1 shows the results that were obtained using trial function (4.1). Also shownm 
the results omitting the Qk term from the trial function. Both sets of results have been 

N 

Figure 1. (a) IEN-El against N for BKR potential x including Q,; 0 no Q k ;  -line 
of gradient ( - 6 ) ;  --- line of gradient (-2). (b)  /Ad;-Ad’l against N for BKR potential 
+/Ad: - Ad’/  ; - - - line of gradient ( -  I) .  

calculated using R = 4.0 and N = 6(4)38. Figure l(a) shows JEN - El against N on a 
logarithmic scale, where for the exact value E we have taken E,, (including Qk term) 
which is 

E 3 E,, = -0.0377155. 

It is immediately apparent that the inclusion of the single Qk term has made a significant 
difference both to the convergence rate and the number of trial functions requid for 
a given accuracy. From the lines drawn we see that the convergence rate has increased 
from approximately O(N-,)  to 0(W6), this last rate being similar to that mentioned 
in 9 3 for the continuous RSC potential. For accuracy we note that for N = 10 the 
results with (without) Qk are respectively accurate to 0.4% (25%) while for N = Zthe 
corresponding figures are 0407% (4%). The results for no Qk confirm the statement 
made in the introduction that a slow convergence rate would be obtained, but Provided 
we use sufficient terms the energy can be accurately estimated. 
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~ j ~ g  ~ ( b )  shows the results for the magnitude of the discontinuity at rc.  From 
can calculate this magnitude to be 

we have plotted [A& - Au"l against N and as the graph indicates this converges at a 
rate proportional to O(N-'), the results for N = 38 being accurate to about 2.0%. 
F ~ ] Y  the results quoted here are typical of those obtained for a range of values of R. 

5. Conclusion 

neresults of the previous sections have shown that the inclusion of a single term Qk 
inbe trial function has enabled us to recover a convergence rate of O(Nd6)  for a dis- 
c o n ~ u o ~  potential (BKR), this being the rate we achieved for the continuous potential 
~sc).  We also note that the convergence rate for Ad' is O(N- '). From the graphs 
presented, it is apparent that the convergence for EN is monotonic for sufficiently large 
N(both with and without the inclusion of the Qk term). This is not necessarily so for 
mall N(53), an observation which has previously been noted by Shore (1973). This 
behaviour should be contrasted with that of a global variational method (GVM), where 
monotonic convergence in N is assured by the separation theorem for symmetric real 
matrices (Wilkinson 1965, Delves 1973). 

Unpublished results (Hennell) for the BKR of 9 4 using the GVM with Hylleras trial 
functions (ie Fe-"') show a similar behaviour to that obtained here with the cubic 
splines (without Qk). Likewise for RSC, results similar to those of the cubic splines are 
obtained. 

The results shown here strongly suggest that the convergence rate of the G ~ M  will 
also improve substantially if discontinuous terms are incorporated in the trial function. 
Inview of the fact that constructing an expansion set with the second derivative dis- 
continuity explicit is non-trivial, the simplest strategy is to use the usual expansion sets 
toeether with a single function incorporating the discontinuity (ie a core function). 
core terms in variational calculations are usually ad hoc functions which in some way 
incorporate the gross features (or some particular feature) of the exact solution. 

Although in this paper, we have used a piecewise approximation everywhere, we 
arenot on the evidence of this paper advocating the use of this method in multiparticle 
probhs. It appears to us that where computer codes already exist for these problems 
thereis nothing to be gained from duplication. For the case of square well-like potentials 
a smPle modification to incorporate a term analogous to those used here in existing 
codes should be adequate. 
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